
Mixing and transport in stars – I. Formalism: momentum, heat and mean
molecular weight

V. M. Canuto1,2P and F. Minotti3
1NASA, Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
2Department of Applied Physics and Mathematics, Columbia University, New York, NY 10027, USA
3Departments of Physics and Plasma Physics–CONICET, University of Buenos Aires, BA, Argentina

Accepted 2001 August 13. Received 2001 July 17; in original form 2001 March 26

A B S T R A C T

The goal of this paper is to derive analytic expressions for the turbulent fluxes of momentum

(Reynolds stresses), heat and mean molecular weight.

(i) Angular momentum. To solve the angular momentum equation one needs to know the

Reynolds stresses Rij, in particular Rfr. It is shown that the latter has the form Rrf ¼

22DsSfr 2 2DvVfr 2 D0V0 2 D1V 1 …; where 2Sfr ¼ sin ur›V=›r is the shear and

2rVfr ¼ sin u›ðr 2VÞ=›r is the vorticity. The dots indicate buoyancy and meridional currents.

The forms of the turbulent diffusivities entering the shear part Ds, vorticity part Dv, rigid

rotation V0 and differential rotation V;Vðr; uÞ are also derived. Previous models have only

the shear term. The vorticity term gives rise to a true diffusion-like equation for the angular

momentum which now reads ›
›t
ðr 2VÞ ¼ r 22 ›

›r
r 4Ds

›V
›r

ÿ �
1 r 22 ›

›r
r 2Dv

›
›r
ðr 2VÞ

� �
1 … :

(ii) Mean temperature equation. Differential rotation alters the mean temperature equation.

In the stationary case, the new flux conservation law reads (x is the radiative diffusivity)

7 1 Khx
21ð7 2 7adÞ1 7V ¼ 7r; where the new term is given by 7V ¼ ðHp/ cpxTÞRrf �uf :

(iii) Tensorial diffusivities. The turbulent flux of a scalar f (like T and m) is shown to have

the form J
f
i ¼ 2D

f
ij

›F
›xj

; where the Dij are tensorial diffusivities. They are shown to be

functions of the external source of energy (e.g. flux of gravity waves), rigid-body rotation,

differential rotation, meridional currents, T–m gradients and Peclet number Pe which

characterizes the role of radiative losses.

(iv) Mixing and advection. The tensorial nature of the diffusivities Dij has an immediate

consequence: the symmetric part Ds
ij gives rise to mixing (by diffusion) while the anti-

symmetric part Da
ij gives rise to advection which cannot be represented by a diffusion

coefficient. The equation describing a mean scalar field F is therefore ›F
›t

1 ð �u 1 u*Þ :7F ¼
›

›xi
Ds

ij
›F
›xj

� �
; u*

i ¼
›

›xj
Da

ij: Thus, even without a mean velocity field ū, there is an advective

term u* arising from turbulence alone. The advective nature of turbulence was not accounted

for in previous studies which have therefore underestimated the full potential of turbulent

motion.

(v) Peclet number dependence. Radiative losses are an important part of the physical

picture, for they weaken the temperature gradient, and thus reduce the effect of stable

stratification and ultimately enhance mixing. The Peclet number dependence is accounted for

in the model.

(vi) Shear-induced versus wave-induced mixing. In this formalism, the dichotomy between

the two processes no longer exists, since we show that the flux of gravity waves, treated as an

external source of energy, is a natural ingredient of the formalism.
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1 T H E P R O B L E M

For many years, the convective zone of a star attracted most of the

attention, and at present a variety of different models have become

available, varying from an improved mixing length which accounts

for the full eddy spectrum (Canuto & Mazzitelli 1991) to modern

Reynolds stresses-based models that include the essential feature

of non-locality.

By contrast, our understanding and ability to describe the

dynamical properties of the stably stratified radiative zones are

more rudimentary. Helioseismology has greatly helped to deter-

mine the acoustic structure of the Sun, but not the thermal and

chemical structure which are due to mixing (by diffusion) and

transport (by advection). We may cite three unsolved problems.

Data indicate that the solar Li abundance is some 200 times

smaller than the initial abundance, an occurrence which has

generally been viewed as an indication of ‘deep but gentle mixing’

several orders of magnitude smaller than the values in the

convective zone but larger than the kinematic values. Such mixing

would bring Li toward the interior of the Sun where it gets

destroyed. The nature of the mixing is still debated, with rotational

mixing and wave-induced mixing being the two major contenders

(Montalban & Schatzman 1996; Pinsonneault 1997; Roxburgh

1997; Zahn 1997; Fritts, Vadas & Andreassen 1998).

A second unresolved problem is why the differential rotation

that characterizes the outer 25 per cent radius of the Sun gives way

to an almost rigid-body rotation in the remaining 75 per cent of the

solar radius. Since no work can be extracted from rigid rotation, the

most frequently discussed alternatives are shear and internal

gravity waves. While the two processes are always discussed as

being mutually exclusive, in our treatment we incorporate both of

them into the same formalism.

The third problem is of a more conceptual nature. It is always

assumed that turbulence of whatever origin only mixes but never

advects, and yet it will be shown that for the case of scalars,

turbulence gives rise to both mixing and advection, while for the

case of angular momentum, only mixing occurs via the Reynolds

stresses. Mixing and advection are quite different processes:

mixing tends to smooth out density differences so as to lead to a

homogeneous flow, while advection does somehow the opposite,

since it brings together different parts of the flow which may have

different densities.

Even an incomplete list of the work in this area brings out the

flavour of the wide variety of different viewpoints as to which

mechanism is more relevant. Since microscopic diffusion is

insufficient, Charbonneau & Michaud (1998) added meridional

currents, but Balachandran (1990) pointed out ensuing disagree-

ment with observed data; a weak turbulence induced by rotation

was added by Vauclair (1988), while gravity waves generated at the

bottom of the convective zone were suggested by Garcia Lopez &

Spruit (1991). While an arbitrary enhancement by a factor of 15

was needed to fit the data, we think that the factor is only <3 which

stems from using a critical Richardson number RiðcrÞ < 1, as

derived from non-linear stability analysis, rather than RiðcrÞ ¼ 1=4.

Richard et al. (1996) showed that meridional currents alone may

explain Li7 data provided that one tweaks adjustable parameters.

Pinsonneault et al. (1989) suggested a model that explains the Li

solar depletion, but the resulting V(r) in the interior of the Sun is

far from flat as demanded by helioseismological data. Ventura et al.

(1998) were able to reproduce the Li7 abundance with an

overshooting (OV) compatible with helioseismological data

provided that there is a magnetic field. Schattl & Weiss (1999)

have shown that an OV model based on a 2D simulation is not

compatible with Li data. Talon & Charbonnel (1998) and

Charbonnel & Talon (1999) assumed that the momentum

diffusivity is identical to the concentration diffusivity which, in

units of the radiative diffusivity, was taken to be a fixed fraction of

the Richardson number. Schatzman, Zahn & Morel (2000) have

concluded that shear instability is an unlikely source of mixing

[their conclusion would have been just the opposite had they used

RiðcrÞ < 1 instead of RiðcrÞ ¼ 1=4�. Charbonneau et al. (1999) and

Dikpati & Gilman (2001) have recently carried out a 2D linear

stability analysis and concluded that, if there is an OV region with

j7 2 7adj < 1025, a shear instability sets in and by inference a

shear-induced mixing. However, to translate that into a turbulent

diffusivity of any kind cannot be achieved with a linear analysis,

for it requires the inclusion of non-linearities, a considerably more

demanding task.

The goal of this paper is not to favour one model over another.

Rather, we work out the most complete model that present

turbulence modelling allows us to construct for the turbulent fluxes

of momentum, T and m. This will help to boost the reliability of the

model and the conclusions that will ensue once the model is

applied to a star. In principle, to include waves, we would have to

begin by splitting every field as follows:

f ¼ �f 1 f00 1 ~f:

Here, f̄ is the mean field, f00 the turbulent part and f̃ the part

arising from the waves. As of today, the full Reynolds stress

methodology has not yet been applied to this case. Here, we shall

give the most complete treatment possible in the case in which we

parametrize the effect of waves via the amount of energy that they

contribute, a variable that will be left undetermined in our model.

Admittedly, this will result in a dynamical model only for the first

two components f̄ and f00, while the third component f̃ is not

treated dynamically. Even so, we think that this work is a necessary

step, for it improves and ties up several loose ends of previous

treatments, not to mention its pedagogical value in preparation for

a more complete model when all three terms in f will be accounted

for.

The model yields the Reynolds stresses Rij and the tensor

diffusivities Dij as functions of the following variables:

P;V0;Vðr; uÞ; �ur ; �uu;7T ;7m;Pe:

Here, P represents the energy source(s), V0 and V(r, u) are the

rigid and differential rotation so that the transition between the two

regimes is accounted for without discontinuities (a requirement not

met by present-day Reynolds stress models), ūr and ūu are the

meridional currents, 7T and 7m are the T- and m-gradients, and Pe

is the Peclet number that governs the role of radiative losses which

weaken the stable temperature gradient and favour mixing. The

expressions for Rij and Dij are analytical.

2 G E N E R A L F O R M U L AT I O N

2.1 Turbulent fluxes

The fields of velocity, temperature and mean molecular weight are

split into an average part (denoted by an overbar) and a fluctuating

part (denoted by a double prime). Using the notation D=Dt ¼

›=›t 1 �ui›=›xi; the dynamic equations for the mean velocity field ū

and the mean scalar field F (e.g. T and m) are of the form (Canuto
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1997)

�r
D�u

Dt
i ¼ 2

›

›xj

ð �rRijÞ1 …; ð1aÞ

�r
DF

Dt
¼ 2

›

›xi

ð �rJ
f
i Þ1 …; ð1bÞ

where the Reynolds stresses Rij and the turbulent fluxes of the

scalar field f are defined as

�rRij ¼ ru00i u00j ; ð1cÞ

�rJ
f
i ¼ ru00f00: ð1dÞ

A turbulence model is used to express Rij and J
f
i in terms of the

large-scale fields ū and F.

2.2 Scalar fields: mixing and advecting

It will be shown that J
f
i is given by the following general

expression:

J
f
i ¼ 2D

f
ij

›F

›xj

; ð2aÞ

where the D
f
ij are the tensorial diffusivities. An immediate

consequence of the tensorial nature of the diffusivities Dij is the

following. Let us split the diffusivity tensor into its symmetric (s)

and antisymmetric (a) parts:

Dij ¼
1
2
ðDij 1 DjiÞ1 1

2
ðDij 2 DjiÞ ¼ Ds

ij 1 Da
ij: ð2bÞ

Then the dynamic equation (1b) for ( �r ¼ 1) F becomes

›F

›t
1 ð �u 1 u*Þ :7F ¼

›

›xi

Ds
ij

›F

›xj

� �
; ð2cÞ

u*
i ¼

›

›xj

Da
ij: ð2dÞ

Only the symmetric part of the diffusivity tensor contributes to true

diffusion (right-hand side of equation 2c), while the antisymmetric

part gives rise to an advective velocity u* (referred to as the bolus

velocity). Thus turbulence gives rise to both mixing by diffusion

via the symmetric Ds
ij and stirring by advection via the anti-

symmetric Da
ij. This general argument shows that it is not correct to

ascribe, as is often done, diffusion to turbulence and advection to a

mean flow, since turbulence contributes to both.

To give a specific example, consider a 1D case. Since the density

r(T,m) is a function of both temperature and mean molecular

weight, the Boussinesq approximation gives

r00/r ¼ 2ahT 00 1 amm
00; ð3aÞ

where ah ¼ 2r21›r/›T and am ¼ r21›r/›m are the expansion

coefficients at constant pressure. Thus the buoyancy (or mass) flux

obtained from (1d) with f00 ¼ r00 is given in terms of the heat

ðf00 ¼ T 00Þ and mðf00 ¼ m00Þ fluxes as

J
r
i ¼ 2ahJh

i 1 amJ
m
i : ð3bÞ

Using (2a), the heat, m and mass fluxes are given by ðr ¼ 1 for

simplicity)

Jh ¼ Dh 2
›T

›z
1

›T

›z

� �
ad

� �
; Jm ¼ 2Dm

›m

›z
;

Jr ¼ 2Dr

›r

›z
: ð3cÞ

Changing to the standard dimensionless gradients 7, we obtain

Dr ¼ ðDh 2 RmDmÞð1 2 RmÞ
21; ð4aÞ

Rm ¼ 7mð7 2 7adÞ
21; ð4bÞ

which shows that the mass diffusivity Dr is fully expressed in

terms of Dh,m. It follows that since overshooting is a mass

transport, it must be described by Jr rather than by Jh, as is usually

done.

2.3 Mean T-equation

The complete form of equation (1b) for the mean temperature T is

as follows (Canuto 1997):

�r
D

Dt
ð�h 1 E 1 Eu 1 GÞ ¼ 27 : ðF rad 1 F h 1 Fke 1 ~tÞ1

›P

›t
:

ð5aÞ

This is a true energy conservation law, since on the left-hand side it

contains the sum of all the energies, thermal ð�h ¼ cvT 1 �p/ �r is the

mean enthalpy which is equal to cpT for a perfect gas), kinetic

(turbulent kinetic energy E ¼ 1
2
tii and mean flow kinetic energy

Eu ¼
1
2 �ui �uiÞ and gravitational ðDG/Dt ¼ gi �uiÞ. On the right-hand

side of (5a) we have the divergences of the radiative flux F rad, the

thermal flux F h, the flux of the turbulent kinetic energy F ke and

the flux t̃ of the Reynolds stresses by the mean velocity field:

Fke
i ¼

1
2
ru00i u00ku00k ; ~ti ¼ �rRij �uj: ð5bÞ

A model is needed not only for F h and Rij (see below), but also for

the third-order moment Fke
i (Canuto, Cheng & Howard 2001;

Kupka, in preparation). The T-equation usually employed, namely

�r
D�h

Dt
¼ 27 : ðF rad 1 F hÞ; ð5cÞ

is a considerable simplification of (5a). Particularly interesting is

the new term t̃ which physically corresponds to the transport of

turbulence (i.e. of the Reynolds stresses) by the mean flow itself,

a process that enhances mixing. To visualize the implications of

this new term, consider the stationary limit ›=›t ; 0 of (5a). We

have

Frad
i 1 Fh

i 1 Fke
i 1 r�uj½ð�h 1 E 1 Eu 1 GÞdij 1 Rij� ¼ constant;

ð5dÞ

which substitutes the standard flux conservation law:

Frad
i 1 Fh

i ¼ constant: ð5eÞ

Consider the r-component of (5d). Differential rotation will give

rise to a new term:

Frad
r 1 Fh

r 1 Fke
r 1 r�ufRrf ¼ constant ð5fÞ

or, neglecting for a moment F ke,

7 1 Khx
21ð7 2 7adÞ1 7V ¼ 7r ; ð5gÞ

7V ¼ ðHp/ cpTxÞRrf �uf: ð5hÞ

The form of the Reynolds stresses Rij is discussed below.

2.4 Velocity field

The dynamic equation (1a) for the mean velocity field ūi defined

Mixing and transport in stars – I 831
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via the mass (Favre) average (Canuto 1997),

�r �ui ¼ rui; ru00i ¼ 0; ð6aÞ

becomes

›

›t
ð �r�uiÞ1

›

›xj

ð �r�ui �uj 1 �rRijÞ ¼ 2 �rgi 2
›P

›xi

2 2 �reijk �ukV
0
j ; ð6bÞ

where V0 represents rigid rotation and Rij are the Reynolds stresses

defined in (1c).

Finally, the mean density r̄ satisfies the dynamic equation

› �r

›t
1

›

›xi

ð �r�uiÞ ¼ 0: ð6cÞ

In spherical coordinates, equations (6b) become ðG; sin u ; r; �r)

2r 3 ›

›t
ðr�ufÞ ¼

›

›r
ðr 3crfÞ1 r 2G22 ›

›u
ðG2cufÞ

1 2rr 3V0ðG�ur 1 cos u�uuÞ; ð6dÞ

›

›t
ðr�urÞ ¼ A1 2

›P

›r
1 r

›F

›r
1 2rV0 sin u�uf; ð6eÞ

›

›t
ðr�uuÞ ¼ A2 2 r 21 ›P

›u
1 rr 21 ›F

›u
1 2rV0 cos u�uf ð6fÞ

where, for the sake of brevity, we have defined the variables

A1 ; 2 r 22 ›

›r
ðr 2crrÞ2 ðrGÞ21 ›

›u
ðGcruÞ1 r 21ðcuu 1 cffÞ;

ð6gÞ

A2 ; 2 r 23 ›

›r
ðr 3cruÞ2 ðrGÞ21 ›

›u
ðGcuuÞ1 ðrtguÞ21cff; ð6hÞ

where

cij ; �rðTij 1 RijÞ; ð7aÞ

Trf ¼ �ur �uf; Tuf ¼ �uu �uf; ð7bÞ

�rRrf ¼ ru00r u00f; �rRuf ¼ ru00uu00f: ð7cÞ

2.5 Angular momentum

The total angular momentum L of a parcel of unit mass is the sum

of absolute (solid-body rotation V0) contributions, and those

relative to the rotating star V(r,u):

L ¼ L0 1 Lr ¼ rGðrGV0 1 �ufÞ: ð8aÞ

It can easily be proved that L satisfies the following conservation

law:

›

›t
ðrLÞ1 7 : ðrFLÞ ¼ 0: ð8bÞ

FL is the flux of angular momentum, the (r,u) components of which

are given by

Fr
L ¼ L�ur 1 rGRrf; ð8cÞ

Fu
L ¼ L�uu 1 rGRuf: ð8dÞ

3 R E Y N O L D S S T R E S S E S : P R E V I O U S

M O D E L S

If one uses the standard Reynolds stress model,

Rrf ¼ 22DmSrf: ð9aÞ

where Dm is a momentum diffusivity.

Equation (6d) yields the following dynamic equation for the

angular momentum,

›

›t
ðr 2VÞ ¼ r 22 ›

›r
r 4Dm

›V

›r

� �
1 …; ð9bÞ

that is most frequently used (Chaboyer & Zahn 1992, equation 18;

Zahn 1992, equation 2.4; Pinsonneault et al. 1989, equation 3).

There are several problems with (9a,b). First, equation (9b) is

usually called a ‘diffusion equation’, but it is not so, since a true

diffusion equation must have the form

›

›t
ðr 2VÞ ¼ r 22 ›

›r
r 2Dm

›

›r
ðr 2VÞ

� �
1 …: ð9cÞ

Secondly, model (9a) is just

Rij ¼ 22DmSij; ð10aÞ

and since shear and vorticity,

2Sij ¼ �ui;j 1 �uj;i; 2Vij ¼ �ui;j 2 �uj;i; ð10bÞ

are two independent, orthogonal tensors, the question arises as to

why (10a) contains shear and not vorticity. In general, one should

expect an expression of the form

Rij ¼ RijðSij;VijÞ: ð10cÞ

From the physical point of view, we recall that shear is contributed

by the large scales while vorticity is contributed mostly by the

smaller scales, and thus the presence of both shear and vorticity in

(10c) is demanded by general considerations. In Section 5 we shall

show that the Rfr-component of the Reynolds stresses has the form

Rfr ¼ 22DsSfr 2 2DvVfr 2 D0V0 2 D1V 1 …; ð10dÞ

where 2Sfr ¼ r sin u ›V=›r is the shear and 2Vfr ¼ r sin u›V=›r is

the vorticity. The remaining terms represent buoyancy and

meridional currents. Thus we see that the momentum flux is

contributed by

Rfr , rigid rot: 1 diff: rot: 1 grad V 1 grad L: ð10eÞ

Over the years, several attempts have been made to improve (10a).

Durney & Spruit (1979) and Durney (2000) used a mixing-length

model to construct the following model:

Rrf ¼ 2 sin u AV 1 Br
›V

›r

� �
; ð11aÞ

while Rudiger (1989) and Kuker, Rudiger & Kichatinov (1993)

suggested the relation

Rrf ¼ Lv sin uV–vvh cos2u
›V

›u
2 vvv sin ur

›V

›r
; ð11bÞ

where the subscripts v and h stand for vertical and horizontal,

respectively. These models do not yield the same expressions for

Rrf and they are also unable to evaluate the turbulent viscosities A,

B, n and L.

(i) Rij should depend on buoyancy. Since the Navier–Stokes

equations for the fluctuating velocity u00i contain the term

›

›t
u00i ¼… 1 gir

00; ð11cÞ

it is clear that in constructing the Reynolds stresses Rij there will

832 V. M. Canuto and F. Minotti
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necessarily be a buoyancy term of the form

Bij < giu
00
j r
00 1 gju

0
ir
00 < Bijð7T ;7mÞ; ð11dÞ

where 7T and 7m are the T- and m-gradients. Buoyancy terms are

not accounted for in (10a).

(ii) Rij should depend on the meridional currents. Since equation

(10c) shows that Rij must depend on both shear and vorticity, it will

naturally also depend on the meridional currents ūr and ūu:

Srr ¼ �ur;r ; rSuu ¼ �ur 1 �uu;u;

2 2rVrf ¼ sin u
›

›r
ðr 2VÞ; rSff ¼ �ur 1 �uutg 21u;

2 2Vuf ¼ 2V cos u 1 sin u
›V

›u
;

2rSru ¼ �ur;u 2 �uu 1 r �uu;r ; 2rVru ¼ �ur;u 2 �uu 2 r �uu;r : ð11eÞ

This means that the meridional currents will enter the angular

momentum equation (8b),

›

›t
ðrLÞ 1 r 22 ›

›r
ðrr 2L�urÞ1 r 22 ›

›r
½rrGRrfð�ur ; �uuÞ�1 … ¼ 0;

ð11fÞ

not only via the advective second term but also via the ‘turbulent’

Rrf which now also depends on the meridional currents, as we have

explicitly indicated in (11f). In previous models (Zahn 1997), the

meridional currents only appear in the second term in (11f).

In summary, the standard Reynolds stress model (9a) does not

provide a complete expression that includes rigid rotation,

differential rotation, meridional currents and buoyancy terms, a

functional dependence that we express as

Rij½P; V0; Vðr; uÞ; �ur ; �uu; 7T ; 7m; Pe�: ð11gÞ

The same dependence also holds true for all the diffusivity tensors

Dij. In the next sections we shall derive (11g).

4 R E Y N O L D S S T R E S S E S : D E R I VAT I O N

F R O M T H E N AV I E R – S T O K E S E Q UAT I O N S

Using the Navier–Stokes equations for the turbulent fields, the

traceless Reynolds stresses (E is the turbulent kinetic energy)

bij ¼ Rij 2 2
3

Edij; E ¼ 1
2

Rii ð12Þ

satisfy the following dynamic equation (Canuto 1999):

D

Dt
bij 1 Df ðbÞ ¼ 2

4

3
KSij 2 Sij 2 Z*

ij 2 B
r
ij 2 Pij; ð13aÞ

where Df represents the diffusion of bij. The pressure correlation

tensor Pij and the other tensors are defined as ðai ; ›a/›xiÞ

Pij ¼ uip;j 1 ujp;i 2 1
3
dijukp;k; ð13bÞ

Sij ¼ bikSjk 1 bjkSik 2 2
3
dijbkmSkm; ð13cÞ

Z*
ij ¼ bikV*

jk 1 bjkV*
ik; ð13dÞ

V*
ij ¼ Vij 2 2eijpV0p; ð13eÞ

B
r
ij ¼ gðliJ

r
j 1 ljJ

r
i Þ2 2

3
gdijlkJ

r
k ; ð13fÞ

where shear Sij, vorticity Vij and buoyancy Bij have already been

defined, and where

li ¼ 2ð �rgÞ21 ›P

›xi

: ð13gÞ

4.1 Pressure correlations

The pressure correlations represented by Pij are the most difficult

part to model. A rather long discussion is presented by Canuto

(1994). It was shown that the Pij contain slow, rapid and buoyancy

contributions, and that the specific form is given by (Canuto 1999)

Pij ¼ PijðslowÞ2 4
5

KSij 2 a1Sij 2 a2
~Zij 1 ð1 2 b5ÞBij; ð14aÞ

where a1,2 and b5 are coefficients to be given later. In addition,

~Zij ¼ bik
~Vjk 1 bjk

~Vik; ð14bÞ

~Vij ¼ Vij 2 eijpV0p: ð14cÞ

Notice that in the pressure correlations the vorticity Ṽij does not

have the factor of 2 that usually appears in the Coriolis term. The

slow part is given by Rotta’s ‘return to isotropy’ model:

PijðslowÞ ¼ At21bij; ð14dÞ

where A is a numerical coefficient,

t ¼ 2Ee21 ð14eÞ

is the eddy turnover time, and e is the rate of dissipation of E

(Section 9). Thus equation (13a) becomes

D

Dt
bij 1 DfðbÞ ¼ 2At21bij 2

8

15
ESij 2 ð1 2 a1ÞSij

2 ð1 2 a2ÞZij 2 b5B
r
ij; ð14fÞ

where

Zij ¼ bikVjk 1 bjkVik 2 pðbikejkp 1 bjkeikpÞV0p; ð14gÞ

p ; ð2 2 a2Þð1 2 a2Þ
21: ð14hÞ

Physically, we can interpret the various terms on the right-hand

side of (14f) as the return to isotropy, shear, the non-linear return to

isotropy, vorticity 1 rotation and buoyancy.

The algebraic Reynolds stress model corresponds to neglecting

the left-hand side of (14f) so that the equation for bij becomes a set

of algebraic equations:

At21bij ¼ 2
8

15
ESij 2 ð1 2 a1ÞSij 2 ð1 2 a2ÞZij 2 b5B

r
ij: ð15aÞ

Let us note that model (10a) corresponds to keeping only the first

term in (15a). The suggested values of the constants are A ¼ 5,

a1 ¼ 0:98, a2 ¼ 0:568 and b5 ¼ 1=2.

5 R E Y N O L D S S T R E S S E S : E X P L I C I T F O R M

Here we present the explicit form of the Reynolds stresses as from

equation (15a). For ease of notation, we employ the dimensionless

variables

rij ; Rij/E; ~V0 ; t½Vðr; uÞ1 pV0�; ð15bÞ

V1 ; t sin u
›V

›u
; V2 ; tr sin u

›V

›r
: ð15cÞ

The explicit forms of the Rij are as follows.
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5.1 Rrf

We have

q0rrf ¼ g0
~V0 1 g1V1 1 g2V2 1 2b5e

21Brf 1 gm; ð16Þ

where

q0 ¼ A 1 ð1 2 a1Þtr 21ð�ur 1 r �ur;r 1 �uutg 21uÞ;

g0 ¼ ða2 2 1Þðrrr sin u 2 rff sin u 1 rru cos uÞ;

2g1 ¼ ða1 1 a2 2 2Þrru;

2g2 ¼ 4ð1=5 2 a1/3Þ1 ða1 1 a2 2 2Þrrr 1 ða1 2 a2Þrff;

2gm ¼ ruf½ða1 1 a2 2 2Þtr 21ð�ur;u 2 �uuÞ1 ða1 2 a2Þt�uu;r�: ð17Þ

Several comments are in order.

(1) The first three terms in (16) can be combined to yield

Rrf ¼ 22DsSfr 2 2DvVfr 2 D0V0 2 D1V 1 …; ð18aÞ

where the diffusivities Ds,v,0,1 corresponding to shear, vorticity,

rigid rotation and differential rotation are given by

Ds ¼
4

15
q21

0 tE;

2Dv ¼ q21
0 ð1 2 a2ÞtðRrr 2 RffÞ;

D1 ¼ q21
0 ð1 2 a2ÞtRru cos u;

D0 ¼ q21
0 ð2 2 a2Þt½ðRrr 2 RffÞ sin u 1 Rru cos u�: ð18bÞ

In deriving (18b), we used the fact that a1 < 1. Thus the

momentum flux Rrf is contributed by the following processes:

Rrf , V0 1 Vðr; uÞ1 grad V 1 grad L: ð18cÞ

The standard model (9a) has only the first term in (18a). It is

important to stress that Ds and Dv,1,0 depend on two different

processes: the first depends on a1 < 1 while the others depend on

a2. As one observes from the general structure of the Reynolds

stresses (15a), the coefficient a1 enters the equation via the shear

terms Sij as equation (13c) shows. On the other hand, the Dv,1,0 are

entirely due to the ð1 2 a2Þ coefficient in (15a) which appears only

via the presence of vorticity Zij defined in equation (14g).

(2) Once substituted into the angular momentum equations

(8a,b), the vorticity term of (18a) gives rise to a true diffusion term

for the angular momentum:

›

›t
ðr 2VÞ ¼ r 22 ›

›r
r 2Dv

›

›r
ðr 2VÞ

� �
1 r 22 ›

›r
r 4Ds

›V

›r

� �
1 … :

ð18dÞ

(3) Without the meridional currents and without buoyancy, Rrf

resembles models (11a,b) but the similarity is only superficial. In

fact, a key feature is that heuristic models like (11a,b) cannot

capture the fact that the functions g are themselves functions of the

other stresses.

(4) The expression for Rrf contains gm which connects Rrf to

Ruf via the meridional currents.

(5) Meridional currents contribute not only to gm but also to q0.

(6) We have separated the contribution arising from buoyancy,

the term Brf which will be computed later.

(7) the DS model (Durney 2000, equation 19) has no meridional

contributions, and g0 has the first two terms but not the rru-term or

the buoyancy term Brf.

5.2 Ruf

q1ruf ¼ f 0
~V0 1 f 1V1 1 f 2V2 1 2b5e

21Buf 1 f m: ð19Þ

Here, we have

q1 ¼ A 1 ð1 2 a1Þr
21tð2�ur 1 �uu;u 1 �uutg 21uÞ;

f 0 ¼ ða2 2 1Þðrru sin u 1 ruu cos u 2 rff cos uÞ;

2f 1 ¼ 4ð1=5 2 a1/3Þ1 ða1 1 a2 2 2Þruu 1 ða1 2 a2Þrff;

2f 2 ¼ ða1 1 a2 2 2Þrru; ð20Þ

2f m ¼ rrf½ða1 1 a2 2 2Þt�uu;r 1 ða1 2 a2Þtr 21ð�ur;u 2 �uuÞ�: ð21Þ

5.3 Rru

q2rru ¼ h0
~V0 1 h1V1 1 h2V2 1 2b5e

21Bru 1 hm; ð22Þ

where

q2 ¼ A 1 ð1 2 a1Þr
21tð�ur 1 �uu;u 1 r �ur;rÞ;

h0 ¼ ða2 2 1Þðrrf cos u 1 ruf sin uÞ;

2h1 ¼ ða1 2 a2Þrrf;

2h2 ¼ ða1 2 a2Þruf; ð23Þ

2hm ¼ 4ð1=5 2 a1/3Þtð�uu;r 1 r 21 �ur;u 2 r 21 �uuÞ

1 rrr½ða1 2 a2Þr
21tð�ur;u 2 �uuÞ1 ða1 1 a2 2 2Þt�uu;r�

1 ruu½ða1 2 a2Þt�uu;r 1 ða11a222Þr 21tð�ur;u 2 �uuÞ�: ð24Þ

5.4 Rrr

q3rrr ¼ s0
~V0 1 s1V1 1 s2V2 1 2b5e

21Brr 1 sm; ð25Þ

where

q3 ¼ A 1 4
3
ð1 2 a1Þt�ur;r ;

s0 ¼ 2ð1 2 a2Þrrf sin u;

3s1 ¼ 2ð1 2 a1Þruf;

3s2 ¼ ð2 1 a1 2 3a2Þrrf; ð26Þ

3sm ¼ 2A 1 8
15
ð2 2 5a1Þt�ur;r

1 4ða1 2 1Þtr 21ð2�ur 1 �uu;u 1 �uutg 21uÞ

1 rru½ða1 1 3a2 2 4Þtr 21ð�ur;u 2 �uuÞ

1 ð2 1 a1 2 3a2Þt�uu;r�2 2ða1 2 1Þtr 21½ruuð�ur 1 �uu;uÞ

1 rfftð�ur 1 �uutg 21uÞ�: ð27Þ

5.5 Rff

q4rff ¼ w0
~V0 1 w1V1 1 w2V2 1 2b5e

21Bff 1 wm; ð28Þ

where

q4 ¼ A 1 4
3
ð1 2 a1Þtr 21ð�ur 1 �uutg 21uÞ;

w0 ¼ 2ða2 2 1Þðrrf sin u 1 ruf cos uÞ;

3w1 ¼ ða1 1 3a2 2 4Þruf;
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3w2 ¼ ða1 1 3a2 2 4Þrrf; ð29Þ

3wm ¼ 2A 1 4
3
ða1 2 1Þt�ur;r 2 4

3
r21t½ða1 1 1=5Þ�ur

1 ð1 2 a1Þ�uu;u 1 2ða1 2 2=5Þ�uutg 21uÞ�

1 2rruð1 2 a1Þr
21tðr �uu;r 1 �ur;u 2 �uuÞ

1 2ð1 2 a1Þrrrt�ur;r 1 2ð1 2 a1Þr
21ruutð�ur 1 �uu;uÞ: ð30Þ

5.6 Ruu

ruu ¼ 2 2 rrr 2 rff: ð31Þ

The turbulent kinetic energy is given by

E ¼ 1
2
ðRrr 1 Ruu 1 RffÞ: ð32Þ

6 B U OYA N C Y F L U X E S

As discussed earlier, the traceless buoyancy flux tensor B
r
ij is given

by equation (13f), where the density flux J
r
i is defined in equation

(3b). If we only keep ›P/›r and ›P/›f, we have from (13g) the

following relations:

2grlr ¼
›P

›r
; 2grlu ¼ r 21 ›P

›u
: ð33aÞ

Since, to first order, equations (6e, f) give

›P

›r
¼ 2rV0 �uf sin u 2 rg; r 21 ›P

›u
¼ 2rV0 �uf cos u; ð33bÞ

we further have

lr ¼ 1 2 2g 21V0 sin u�uf; ð33cÞ

lu ¼ 22g 21V0 cos u�uf: ð33dÞ

If we assume that the only non-vanishing pressure gradients are in

the r, u-directions, the required buoyancy fluxes entering the

expressions for Rij are given by

Brf ¼ glrJ
r
f; Buf ¼ gluJ

r
f; Bru ¼ gðlrJ

r
u 1 luJrr Þ;

Brr ¼
2
3

gð2lrJ
r
r 2 luJ

r
uÞ; Bff ¼ 2 2

3
gðluJ

r
u 1 lrJ

r
r Þ: ð34Þ

7 H E AT A N D m- D I F F U S I V I T I E S

Since each J
r
i in (34) is given by equation (3b) in terms of the heat

and m-fluxes, we shall now express Jh
i and J

m
i . Using previous

results (Canuto 1999), we have

heat flux : Fh
i ¼ cp �rJh

i ; �rJh
i ¼ ru00i T 00; ð35aÞ

where

ðdij 1 aijÞJ
h
j ¼ p1tRijbj 2 p1p2gt 2amlibjJ

m
j ; ð35bÞ

aij ¼ p1tðSij 1 VijÞ2 p1gt 2liðp3ahbj 1 p2ammjÞ; ð35cÞ

where

bi ¼ 2
›T

›xi

1
›T

›xi

� �
ad

: ð35dÞ

We also have

m-flux : F
m
i ¼ �rJ

m
i ¼ ru00i m

00; ð36aÞ

ðdij 1 bijÞJ
m
j ¼ 2p1tRijmj 2 p1p2gt 2ahlimjJ

h
j ; ð36bÞ

bij ¼ p1tðSij 1 VijÞ2 p1gt 2liðp2ahbj 1 p3ammjÞ; ð36cÞ

where

mi ¼
›m

›xi

: ð36dÞ

Equations (35)-(36) are a set of coupled, linear algebraic equations

that can be solved to yield the fluxes J
h;m
i . The dimensionless time-

scales p(Pe) are discussed below.

With the above expressions for the heat and m-fluxes, one then

constructs the mass flux:

mass flux �rJ
r
i ¼ ru00i r

00; ð37aÞ

J
r
i ¼ 2ahJh

i 1 amJ
m
i : ð37bÞ

Using the Hamilton–Cayley theorem, equations (35b) and (36b)

can be rewritten so as to exhibit the more familiar form (Canuto

1999)

Jh
i ¼ Dh

ijbi; etc: ð37cÞ

However, since the tensors Dh
ij and D

m
ij are rather complex, in

practical applications equations (35)-(36) are preferable for they

are a system of linear algebraic equations.

As an example, consider the case of zero m-gradient and no

shear/vorticity. Equation (35b) reduces to

ðdij 1 aijÞJ
h
j ¼ p1tRijbj; ð37dÞ

aij ¼ 2p1p3gt 2liahbj: ð37eÞ

In a 1D case, we further have ðJh
3 ; J h, b3 ;b, Rij ¼ R33 ¼ �w 2Þ:

Jh ¼ Dhb; Dh ¼ p1t �w 2ð1 1 p1p3N 2t 2Þ21; ð37fÞ

where Dh is the heat diffusivity and N 2 is the Brunt–Vaisala

frequency:

N 2 ¼ 2gahb; ð37gÞ

which is positive for a stably stratified flow and negative in the

convective case. Equation (37f) is the standard expression for the

1D heat flux.

8 P E C L E T N U M B E R D E P E N D E N C E

The Peclet number dependence of the dimensionless time-scale p

was derived by Canuto & Dubovikov (1998) to be

p1 ; ð4p2Þ21Pe½1 1 5ð4p2Þ21ð1 1 s21
t ÞPe�21; ð38aÞ

p3 ; 4ð7p2Þ21Pe½1 1 4ð7p2Þ21s21
t Pe�21; ð38bÞ

p2 ¼
1
2
p3; ð38cÞ

with st ¼ 0:72. The Peclet number is defined as

Pe ¼
4p2

125

E 2

ex
: ð38dÞ

9 DY N A M I C E Q UAT I O N S : G R AV I T Y WAV E S

The above expressions for the fluxes, stresses and Peclet number

involve two turbulence variables E and e:

t ¼ 2E/e; ð39aÞ
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and thus one needs two additional equations for E and e. The

equation for E is

›E

›t
1 7 :Fke ¼ Ps 1 Pb 1 P 2 e; ð39bÞ

Ps ¼ 2RijSij; Pb ¼ 2gliJ
r
i ; ð39cÞ

where the flux of turbulent kinetic energy F ke represents the non-

local character of turbulence (Canuto et al. 2001). Here,
Q

represents the possible contribution of sources other than shear, for

example gravity waves, for which one can use the estimate by

Kumar, Talon & Zahn (1999):

IIðgravity wavesÞ < 0:1 per cent � ðL/MÞsun

¼ 2 � 1023 cm2 s23 ð39dÞ

In the local limit, equation (39b) becomes

PS 1 Pb 1 P ¼ e; ð39eÞ

which means that

production ¼ dissipation: ð39fÞ

The equation for e has been discussed previously (e.g. Canuto &

Dubovikov 1998), and it could be utilized here too. However, we

suggest a simpler model. To proceed, we begin with the

Kolmogorov-like relation

e ¼ E 3=2L21
; ð40aÞ

where L is a mixing length to be discussed in what follows. Next,

we introduce the dimensionless function

c; ðtNÞ2; ð40bÞ

which measures the eddy turnover time t ¼ 2E/e in units of the

time-scale of stratification N. Thus we can express both E and e in

terms of L and c as follows:

E ¼ 4ðLNÞ2c21; e ¼ 8L2N 3c23=2: ð40cÞ

Substituting (40c) in all the expressions for the Reynolds stresses

Rij, buoyancy fluxes J
r
i and Pe, one is left with only one unknown,

c, which is determined by solving the algebraic equation (39e).

The mixing length-scale L can be parametrized in two ways:

L ¼ aHp; ð41aÞ

which is the standard, although approximate, model in the absence

of stable stratification; and

L ¼ aHpFðcÞ; ð41bÞ

where F(c) is a dimensionless function of c itself. The presence of

F(c) is the recognition that, in the presence of stable stratification,

all length-scales are reduced. Deardorff (1980) first suggested the

heuristic expression

L/ l < wN 21; ð41cÞ

where w < E 1=2 and l is the length-scale in the absence of

stratification which one may parameterize using (41a). More

recently, Cheng & Canuto (1994) have derived a more general

model for L that encompasses (41c) as a limiting case. Using that

result, we suggest that the ratio L/ l ; x be taken as the solution of

the following cubic equation (see Cheng & Canuto 1994,

equations 38a,b):

y 3 2 y 2 1 AðcÞy 1 BðcÞ ¼ 0; ð41dÞ

where

y ; x 2=3; AðcÞ ¼ bf 4=3; BðcÞ ¼ af 2 2 bf 4=3; ð41eÞ

f; 1
2

cec
1=2; ce ;p 2

3K0

� �3=2

; ð41fÞ

3p2a ¼ 2ðS 2 1Þ; a ¼ 0:12 S 2 1 1 3
2

S 21
ÿ �4=9

; ð41gÞ

S ¼ 1 1 1
4

31=2Ko 3=2ðR21
f 2 1Þ: ð41hÞ

Ko is the Kolmogorov constant ð1:5 , Ko , 1:8Þ and Rf is the flux

Richardson number

Rf ¼
jPbj

PS 1 P
, 1: ð41iÞ

Alternatively, one can assume values of Rf and then check whether

(41i) is satisfied. The ratio L/ l is expected to be a decreasing

function of c since the stronger the stratification N, the larger the

reduction of the length-scale L. For example, for tN ¼ 40 and

Rf ¼ 0:8, equation (41b) gives L/ l ¼ 0:2.

1 0 P R AC T I C A L U S E O F T H E M O D E L

As already discussed, in practical calculations, the most convenient

form for the Reynolds stresses Rij is given by the compact form

(15a) which amounts to a system of linear algebraic equations for

the various components of Rij. The explicit form presented in

Section 5 is convenient for discussing the physical content of the

various components, but not for practical applications. The heat

and m fluxes needed to compute the buoyancy/mass flux tensor Bij

that is present in (15a) are computed using the definition (3b). The

latter involves the heat and m fluxes which are obtained by solving

the set of linear algebraic equations (35)–(36). The two variables E

and e (we recall that t ¼ 2E/eÞmust be written as in (40c) where c

is the solution of the production¼ dissipation relation (39e).

Finally, for L we have suggested two models, as shown by

equations (41a,b).

1 1 C O N C L U S I O N S

We have presented the most updated Reynolds stresses Rij, heat Jh
i

and m fluxes J
m
i that today’s turbulence models allow us to

compute. This work is a considerable generalization not only of

mixing-length-type models (Durney & Spruit 1979) but also of our

own work (Canuto, Minotti & Schilling 1994). The Reynolds

stresses Rij depend explicitly on the buoyancy fluxes Bij which

appear in all the final expressions for Rij. The heat and m fluxes

themselves depend on the large-scale flow �uð�ur ; �uf; �uuÞ as seen

from equations (35)-(36). The present formalism can be applied to
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a variety of problems, of which we sample the most frequently

discussed.

11.1 Transport of angular momentum

This has been studied by Pinsonneault et al. (1989), Schatzman

(1990), Zahn (1987, 1990, 1992), Maeder & Zahn (1998) and

Elliott, Miesh & Toomre (2000). The angular momentum

conservation, equations (8b) involves the Reynolds stresses Rij

which are given by equations (15a). If one is interested in the

convective zone (CZ) where there is strong mixing, one can

assume that the m-gradients are rather small, thus considerably

simplifying the problem since only the T-fluxes remain. If,

however, one studies the transport of angular momentum below

the CZ in the stably stratified radiative zone (RZ) where mixing

is significantly less efficient, such m-gradients cannot be

neglected. In both cases, the angular momentum equation

depends on the meridional currents ūr and ūu, for which the

dynamic equations are given equations (6e) and (6f). Once again,

different treatments are required depending on whether one

works in the CZ or RZ. In the latter case, ūr and ūu are

usually taken to be of the Eddington–Sweet–Vogt form (e.g.

Zahn 1992).

11.2 Solar tachocline

Helioseismological data (Antia, Basu & Chitre 1998; Charbonneau

et al. 1999; Corbard, Berthomieu & Provost 1998; Li & Wilson

1998) have shown that solar rotation changes quite abruptly from

latitude-dependent in the CZ to (almost) uniform in the RZ. Since

thus far most Rij have been expressed as

Rij , aijr›V=›r 1 bij›V=›u; ð42aÞ

the Rij abruptly vanish in the tachocline and so do the diffusivities.

The model presented here is no longer of the form (42a) but rather

of the form

Rij , f ðSij;VijÞ1 cijðV 1 V0Þ1 dijð�ur ; �uuÞ1 Bij: ð42bÞ

In (42b) there are four new terms: a vorticity term Vij, a linear

dependence on V(r,u) and V0, a term dij that depends on the

meridional flow ūr, ūu and a buoyancy term Bij. The last two

terms are missing in all previous models, while the V-term was

introduced by Rudiger (1989) using heuristic arguments. Here,

the full form (42b) is derived from the Navier–Stokes

equations.

Because of the abrupt change in the functional dependence of V

from the CZ to the RZ, the layer between the two is the seat of

strong vertical shear. Since radiative losses become increasingly

important and since they weaken the temperature gradients and

thus the negative effects of stratification, the extent to which

turbulence ‘survives’ is a delicate matter that linear stability

analysis cannot resolve (Schatzman et al. 2000; Dikpati & Gilman

2001). Coming down from the CZ where the mixing is the

strongest and the radiative losses the weakest, into the RZ where

the opposite is true, one needs to follow ‘the path toward the fading

of turbulence’ by tracking the behaviour of turbulent kinetic energy

E as a function of two factors that represent opposite effects: the

Richardson number which quantifies the strength of shear (a

source) versus stratification (a sink), and the Peclet number Pe

which characterizes the strength of radiative losses. The difficulty

is that Pe itself is a function of the dynamical variable E and e,

equation (38d), and thus Pe cannot be assigned a fixed value since it

is getting smaller as one enters the RZ. Thus Pe is part of the

solution rather than a pre-fixed value.

Our approach, which can be seen as being top-down since it

follows how turbulence weakens in the presence of radiative losses

(Canuto 1998), indicates that turbulence persists longer than

expected on linear stability grounds. With the present more general

formalism, the problem ought to be revisited since the presence of

meridional currents can further alter the conclusions of recent

studies (Schatzman et al. 2000).

11.3 Mixing and advecting

In general, the diffusivities that we have derived are represented by

non-symmetric tensors. We have shown that the symmetric part

gives rise to mixing (diffusion), while the antisymmetric part gives

rise to advection (also called stirring, folding or streaking). Thus the

common assumption, that turbulence gives rise only to mixing while

advection is entirely due to a mean flow, is proven to be incorrect.
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